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As demonstrated with examples the Numerov-Cooley algorithm can be applied to more 
complicated potentials (especially multiminima potentials). There are no stability problems in 
the classically forbidden regions. An extrapolation formula for energy eigenvalues is deduced, 
which gets an additional accuracy of 2 .. ‘4 digits for energy eigenvalues. This formula is 
checked as follows: For one state of a double minimum potential (which is used to 
approximate hydrogen bond potentials) an analytical solution is given. This solution is com- 
pared with numerical results. Also the accuracy of the eigenfunctions is checked. Computer- 
dependent rounding errors (CDC Cyber 995) are estimated. The eigenfunctions corresponding 
to l-dimensional potentials V’(x) and VJ’( y) are used as basis functions for a perturbed 2- 
dimensional multiminima potential V’(x) + Vy( y) + AV(x, y). For a 63-minima potential as 
an example, the accuracy of the eigenvalues is 4.. ‘6 digits depending on the perturbation 
AV(x, y). The computer time, depending on the accuracy, is tabulated for different poten- 
tials. ‘c 1989 Academic Press, Inc. 

The Cooley-Numerov algorithm [ 1,2] is a 3-point shooting method with the 
recurrence formula 

(1) 

whereby 

4x) = $y (V(x) - E), 

solving the l-dimensional stationary Schrodinger equation, whereby the energy E is 
an input parameter. This procedure was improved by various authors [3-73 and 
compared with other methods [8-IO]. The boundary conditions y, := y(xr) = 0 
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and yZ := y(x2) # 0 are used to integrate with increasing index n up to a matching 
point yk. In the same way the integration for decreasing n with the boundary condi- 
tions TN := y(xN) = 0 and yN--l := y(x,- ,) #O (N= total number of points) is 
done up to the matching point y,. The function values ( yi, y,, . . . . yk) are adapted 
to EC, Yk + 19 ..*, fi) by the condition y, =x. If the slope at xk is equal for left and 
right integration ( y; = s), an eigenvalue E is found. 

In the following only boundary conditions at one outer region are used (for 
example, at x = x, and x = x2) [ 11-131. In this modified method it is the goal to 
obtain good boundary conditions at the other side by varying the energy E. 

To determine the eigenvalues E, the following criterion is used: a necessary con- 
dition that the solutions are eigenfunctions is that the obtained functions decrease 
with increasing x in the right outer region. This criterion is verified by minimizing 
Y(XN). 

Essential for this procedure is the fact that the linear independent solutions have 
opposite properties for each eigenvalue: The physical solution vanishes for large x 
values, whereas the second solution increases exponentially. 

With (y,, n = 1, . . . . N) also (c x y,, n = 1, . . . . N) is a solution. Therefore, without 
restriction, y, can be chosen as a fixed value, for instance, ~1~ = 1. 

Figure la shows how the eigenvalues are systematically found. In this figure, 

(b) 

FIG. I(a) y,(E) is the right function value y(xN) for the energy parameter E. y,(E) is logarithmic 
scaled in positive and negative direction. The zeros of y,(E) are the energy eigenvalues E of the har- 
monic oscillator. (b) Results from (a) with a stretching factor of about 2 x 10” in E direction near 
E=OS. It demonstrates the large slope of y,.JE) near an eigenvalue and the high accuracy of the 
method. 
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Energy E 
10.5 + 10-Z 
10.5+10-4 
10.5+10-6 
10.5+10-8 
10.5 + lo-lo 

10.5 

10.5 - lo-l0 
10.5 - 10-s 
10.5 - 10-6 
10.5-10-4 
10.5-10-2 

N = 20000 

XN = -51 

FIG. 2. Dependence of the eigenvalue of the 10th excited state of the harmonic oscillator (E= 10.5) 
on the boundaries xN = -x, and the initial condition y; = y’(x,). Eigenvalues EC 10.5 and eigenvalues 
E> 10.5 are scaled logarithmic, respectively. The dashed area marks the eigenvalues corresponding to 
0 < y’(x,) < 1O’O. 

YN := y(xN) is shown as a function of the energy E (harmonic oscillator; 
m = o = #i = 1). The eigenvalues are the zeros of this function. The iteration algo- 
rithm works as follows: it counts the zeros of the functions y(x) for every energy 
parameter E. If the number of zeros increases by one then the neighboring function 
values y,(E,) and yN(Ei+ r ) are connected by a cubic spline function. The zero of 
this interpolation function is the next iteration value for the energy parameter E. 

Figure lb shows a section of Fig. la in which the abscissa is expanded by a factor 
2 x 10”. This figure illustrates the very steep slope of this function near an eigen- 
value. Therefore, the convergence of the iteration is very rapid. 

Figure 2 shows the numerical eigenvalues of the tenth state of the harmonic 
oscillator as a function of xN (x, = -xi). The lower curve represents values for a 
slope (y2- yl)/(x,-x,)=0 and the upper one for a slope (y2- yl)/(xZ-xl) 
= 10”. This figure points out the connection between the accuracy of the calculated 
eigenvalues and the chosen boundaries xN = -x1. The accuracy decreases orders of 
magnitude if XN is chosen too small. The eigenvalues in the dashed area correspond 
to a slope, which is greater than 0 but smaller than 10”. 

AN EXTRAPOLATION FORMULA FOR ENERGY EIGENVALUES 

The Numerov algorithm is exact up to fourth order [ 11. Therefore the deviation 
of the energy eigenvalues EcN) (using N points) from the exact (extrapolated) value 
E,,,, should be 24 = 16 times larger than for EcZN). More generally, 

E extr 
E (N>W 

extr 
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or 

L, = 
EC”) - E’N’( N/M)4 

1 -(iv/M)4 . (2) 

Herewith M and N are the step numbers of two calculations (Richardson 
extrapolation, [ 141). 

Table I confirms that the extrapolated value E,,,, is two to four digits more 
precise than E (‘NJ Table I(a) corresponds to the harmonic oscillator in atomic . 
units, Table I(b) to the fourth eigenstate (E4 = 0) of the double minimum potential 
(Fig. 3) which is calculated analytically as follows: To find the analytical solution, 
the shape of the potential is, first, not fixed. An answer of the following question 
is searched: What is the shape of the potential V(x) if the wave function 

Y(x) =f(x) . e@); f; g polynomials g < c E Iw (3) 

is an analytical solution? From this formulation follows 

(1/2m) V(x) 

WI 
+ g"+ g'* . 

> 

TABLE I 

The Use of Eq. (2) Increases the Accuracy of the Energy Eigenvalues by 2 .. ‘4 
Digits 

state N E(N) 2*N E(2*N) 

a 0 50 .499967959442 100 
0 100 .499998016264 200 
0 200 .499999876307 400 

1 50 1.499714066310 100 
1 100 1.499986101268 200 
1 200 1.499999133956 400 

2 50 2.499192106056 100 
2 100 2.499950305663 200 
2 200 2.499996906127 400 

3 50 3.497952691725 100 
3 100 3.499874606967 200 
3 200 3.499992200942 400 

state N E(N) 

b 4 250 -.000008581487 
4 500 -.000000536023 
4 1000 -.000000033497 

.499998016264 .500000020052 

.499999076307 .500000000310 

.499999992274 .500000000005 

i.499586101268 1.500000183598 
1.499999133956 1.500000002802 
1.499999945913 1.500000000043 

2.499950305663 2.500000852303 
2.499996906127 2.500000012825 
2.499999806819 2.500000000198 

3.499074606967 3.500002734650 
3.499992200942 3.500000040540 
3.499999513145 3.500000000625 

Eextr 

2’N E(2*N) 
Eextr 

500 -.000000536023 .000000000341 
1000 -.000000033497 .000000000005 
2000 -.000000002094 .oooooooooooo 

(4) 

Note. (a) Four lowest states of the harmonic oscillator. (b) Fourth state of a 
double minimum potential (see analytical solution in Fig. 3). 
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20 1 
*- V(x) = 81” - 22x2 - 8 

‘P,(x) = (8z4 - 8x2 + l)e-" 
\ \ 

O- 

-2.3 x --+ 2.3 

FIG. 3. YJx) is the analytical solution for the double minimum potential V(x) (m = ~5 = 1; E, = 0). 

The following special shape of the wave function is chosen 

Y(x) = (a4x4 + a2x2 + ao) eCx4. (5) 

The condition that the potential V(x) should not have any singularities can only be 
fulfilled if the polynomial division (f” + 2f’g’)lf (Eq. (4)) results again in a polyno- 
mial, i.e., 

f” + 2f’g’ = p .f, c E IF& p polynomial. (6) 

If Eq. (5) is inserted in Eq. (6) one obtains a system of equations for the coefficients 
off(x) and p(x) and as result YJx) as well as V(x). Parts of these calculations can 
be performed by the programming language REDUCE. In similar way an eigen- 
function with eigenvalues to a multidimensional potential can be found analytically. 

ACCURACY OF EIGENFUNCTIONS AND EIGENVALLJES 

A measure of accuracy for eigenfunctions is 

F= J’;” 1 Y,(X) - Y,(x)~ dx 
XI 

(7) 

whereby Yi(x) is the normalized analytical and !F1(x) the normalized numerical 
eigenfunction. 



152 MICHAEL ECKERT 

TABLE II 

Measure of Accuracy (Eq. (7)) for the 4 th eigen- 
function of the double minimum potential in 
Fig. 3 depending on the number N of function 

values. 

N E F 

125 -.0001376322 .0000219367 
250 -.0000085815 .0000013644 
500 -.0000005360 .0000000852 

1000 -.0000000335 .0000000052 
2000 -.0000000021 .0000000003 
4000 -.0000000001 .oooooooooo 

Table II shows this measure of accuracy for the fourth eigenstate of the above 
double minimum potential depending on the number of function values N. For 
N= 1000 the accuracy is better than lop6 %, for N=4000 better than lo-* %. 

In contrast to usual numerical methods with the above treatment very high 
eigenfunctions and eigenvalues also can be calculated precisely. This is 
demonstrated in Table III in which the eigenualues of the lOOOth, 3OOOth, and 
10,OOOth excited state of the harmonic oscillator are given as a function of the 
number of points N. The table shows the convergence of the eigenvalues to the 
analytical values (k + $) with an increasing number of points A? 

The right side of Table III shows that the extrapolation formula (2) also gives 

TABLE III 

Accuracy of the lOOOth, 3OOOth, and 10000th States of the Harmonic 
Oscillator (m =w =fi = 1) Depending on the Number N of Calculated 

Function Values y, (n = 1, . . . . N) 

N state E 2*N Eextr 

8000 1000 1000.399597 16000 1000.500049 
16000 1000 1000.493771 32000 1000.500000 
32000 1000 1000.499611 64000 1000.500000 
64000 1000 1000.499976 128000 1000.500000 

128000 1000 1000.499998 256000 1000.500000 
256000 1000 1000.500000 

32000 3000 3000.411601 64000 3000.500023 
64000 3000 3000.494497 128000 3000.500000 

128000 3000 3000.499656 256000 3000.500000 
256000 3000 3000.499979 512000 3000.500000 
512000 3000 3000.499999 

128000 10000 10000.369712 256000 10000.500022 
256000 10000 10000.491878 512000 10000.500001 
512000 10000 10000.499493 

Note. The eigenfunctions corresponding to these states have 1000, 3000, 
and 10,000 zeros. The analytical energy value of the kth state is E = k + 4. The 
right side shows results obtained by the extrapolation formula (2). 
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results which are three to four orders of magnitude more precise for very high 
states. 

MULTIMINIMA POTENTIALS 

Some authors [4, lo] have reported stability problems in the classically forbid- 
den regions and difficulties with multiminima potentials. The following 40-minima 
potential and other calculated examples show that the (modified) Cooley-Numerov 
algorithm is particularly suitable for multiminima notentials and can therefore also 
be used j in L solid state physics. The potential 

I 

V(x ) = 0.5.(x-(2k-l)a)’ 

I 

0.5 . (x - a)’ for --co <xd2a 

for2(k- l)a<x<2ka; 2<k<M-- 1 (8) 
0.5 .(x- (2M- l)a)’ for2(M-l)a<x<co 

m=fi= 1, M = number of minima (= 40) 

is a parabolic 40-minima potential. With increasing a, the barriers and the classical 
forbidden regions increase. 

Figure 4a shows this potential for a= 3. In the Figs. 4b-d the wave functions of 

38. Stale Energy=.500365 N=2000 

I , 8 

39. State Energy=.500389 N=2000 

60. State Energy=2.44796 N=SOOO 
7 

,.,,,I~. 

62. State Energy=2.44892 N=5000 

FIG. 4. Eigenfunctions and eigenvalues to the /IO-minima potential, represented in Fig. 4a; 
- 3.5 < x f 243.5, a = 3. 
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the three lowest states are given. Figs. 4e-g show the three highest states of the 
lowest energy band. Finally, Figs. 4h-j show the three lowest states of the third 
energy band. 

For a=2; 3; 4; 5 the height of the potential barriers amounts to 2; 4.5; 8; 12.5 
and the width of the energy band AE = E,, - E, amounts to 0.082987; (x000837; 
0.00000102; 0.000000000156 for N= 5000 steps, respectively. 

The accuracy of the energy eigenvalues of this potential is limited to 6 . . ‘8 digits 
by the peaks at x = 2 x k x u (k = 1, . . . . 39). 

In Fig. 5 the function y,(E) for a = 5 and N= 5000 is shown (see Fig. 1). The 
deviation of the energy band from the theoretical center E= 0.5 (harmonic 
oscillator) decreases with increasing N. The accuracy of the differences Ei - E, 
(i, j = 0, . ..) 39) is much higher than the absolute values Ei and Ej. The energy levels 
are not homogeneously distributed in the band: The density at the boundaries is 
higher. 

Only in a small energy section y,(E) < y,,, is true, whereby y,,, has a size of 
about 10300 (dependent on the computer used). An arithmetic overflow error 
(y,(E) > y,,,) can be avoided by stopping the calculation if y,(E) > y,,, 
(3 < i < N). The procedure to find an energy value E without arithmetic overflow is 
similar to the algorithm described in the introduction. 

Table IV shows the convergence of the three lowest energy eigenvalues for a 40-, 
loo-, and lOOO-minima parabolic potential (Eq. (8)) for a = 3 as a function of the 
number of steps N. For N= 18,000 the accuracy amounts to 8 (40 minima), 
7 (100 minima), and 3 (1000 minima) digits. The extrapolated energy for the lOOO- 
minima potential amounts to 0.49955 and is precise up to live digits. In the case of 
lOOO-minima the distance of the lowest energy levels is of the order of magnitude 

- 10’55 
.49999983330 .49999983335 .49999983340 J 

FIG. 5. y,(E) for a = 5 and N = 5000. For E < E, and E > E. 19r yN(E) is increasing very quickly. 
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TABLE IV 

The Three Lowest Energy Eigenvalues of a 40-, lOO-, and lOWminima potential 
depending on N. 

N 
2000 
4000 
6000 
8000 

10000 
12000 
14000 
16000 
18000 

N 

2000 
4000 
6000 
8000 

10000 
12000 
14000 
16000 
18000 

N 

2000 
4000 
6000 
8000 

10000 
12000 
14000 
16000 
18000 

40 Minima, EO 

499552012 
1499552052 
.499552896 
.499552903 
499552904 

:499552907 
499552906 

:499552906 
.499552907 
40 Minima, El 

499555693 
:499556549 
.499556592 

499556602 
:499556596 

499556604 
:499556606 
.499556606 
.499556604 

40 Minima, E2 

499561878 
:499562695 

499562136 
:499562746 

499562776 
1499562740 

499562140 
1499562749 
a499562748 

N 

2000 
4000 
6000 
8000 

10000 
12000 
14000 
16000 
18000 

N 

2000 
4000 
6000 
8000 

10000 
12000 
14000 
16000 
18000 

N 

2000 
4000 
6000 
8000 

10000 
12000 
14000 
16000 
18000 

100 Minima, EO 

.499519042 
499549844 

:499551476 
.499551743 

499551823 
:499551t349 

499551861 
:499551866 
.499551869 

100 Mlnlma, El 

.499519651 
499550455 

:499552055 
.499552354 

499552432 
:499552450 

499552469 
1499552474 
.499552470 

100 Minima, E2 

499520668 
:499551475 
.499553099 

499553374 
1499553446 
.499553472 

499553483 
:4995534m 
.499553491 

N 1000 Minima, EO 

12000 499292503 
14000 :499410954 
16000 .499468546 
18000 .499499444 

N 

12000 
14000 
16000 
18000 

1000 Minima, El 

.499292503 
499410954 

1499460546 
.499499445 

N 

12000 
14000 
16000 
18000 

1000 Minima, E2 
499292503 

:499410954 
.499460546 
.499499446 

There are no stability problems in the classically forbidden regions of such multi- 
minima potentials. 

A similar, but differentiable potential is 

a, .x4, for x<O, 

a2.sin2”’ n.X , 
( > a3 

for Odx<(n,- l)a,, 

a4(x - b2 - 1) a3J4, for (n2- l)a,<x< co, 

+ a5 . exp[ -a6(x - a,)2] + a8 . x 

n,,n*EN; aiE R, i = 1, . . . . 8. (9) 

n1 determines the width of the barriers and n2 the number of minima. a3 is the dis- 
tance of two minima; a5, ah, and a7 correspond to a Gaussian function simulating 
a local perturbation. a, corresponds to a term simulating a constant external 
electrical field. Such a potential (including eigenvalues) is illustrated in Fig. 6. 
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0 
0 50 z - 

FIG. 6. 20-minima potential (Eq. (9)) with energy eigenvalues in atomic units. The 0.‘. 19th state 
are building up an energy band. The distance between states 1 and 2 is very small and cannot be 
represented in this figure (m = fi = 1; n, = 10, n2 = 20; a, = 1, a, = 1, a, = 3, a4 = 1, a5 = 0.2, a6 = 0.028 
(half width = 5), a7 = 10, as = 0.003). 

For such potentials the accuracy of eigenfunctions was checked. But ‘P,(x) in (7) 
is now the normalized numerical eigenfunction to N= 4000 and !Pu,(x) to N= 8000. 
With n2 = 10 minima and n, = 1, . . . . 5 the measure of accuracy F is about 10e8 
(lop6 %); for 30 minima, 10P7; for 60 minima, 10-6; and for 100 minima, lo-‘. 

2- AND ~-DIMENSIONAL SCHR~DINGER EQUATION 

For the potential 

W, Y) = Wx) + V’(Y) + A Vx, Y) (10) 

(in the same way: V(x, y, z)), the Schriidinger equation can only be separated for 
AV(x, y) = 0 and then it can be solved by the shooting procedure [ 11-131. The 
2-dimensional eigenfunctions are products of the l-dimensional ones. Figure 7 
shows for the 2-dimensional case a 63-minima potential (9 minimas corresponding 
to V”(x), 7 minimas corresponding to V’(y)). Additionally in the center of this 
figure a perturbation term AV(x, y) (for example a product of two Gaussian func- 
tions) is introduced. To obtain the eigenvalues of this perturbed system, the 
2-dimensional basis functions are built up by products of l-dimensional eigenfunc- 
tions of the unperturbed systems (corresponding Y”(x) and Vy( y)). Also additional 
functions (for example, oscillator functions) can be used as basis functions. The 
eigenfunctions of the perturbed systems are a linear combination of these basis 
functions. The coefficients of the basis functions are determined by solving a matrix 
eigenvalue problem. All integrals can be reduced to l-dimensional integrals, if 

AV(x, y) = 1 V;(x). V/‘(y). (11) 
I 
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a 

- - :r 

FIG. 7. Multiminima potential V’(X) + VJ( y) + d V(x, y): (a) only minima; (b) only maxima. 
Perturbation d V(x, y) in the center. 

They are evaluated by Simpsons rule. The error caused by Simpson integration is 
in orders of magnitude smaller than the error caused by the finite (uncomplete) set 
of basis functions. The accuracy of the energy eigenvalues is 4 . . .6 digits depending 
on the perturbation potential and the number of 2-dimensional basis functions 
(n=25...49). 

Only N = 400 eigenfunction values yi (i = 1, . . . . N) are needed. This is one reason 
why the calculation time including the matrix eigenvalue problem amounts to only 
0.2 .0.7 s (CDC Cyber 995). 

COMPARISON TO THE CONVENTIONAL COOLEY ALGORITHM 

The algorithm used here (described in the Introduction) was compared to the 
conventional Cooley algorithm. Especially for higher states the curvature of the 
eigenfunction at the matching point may be very strong (see Figs. 4h-j). If, 
however, precise formulas for the slopes yb and 2 at the matching point xk are 
used, for example, 

2.45yk-6~-, +%5y,-2-T y,-,+3.75yk-,- 1.2y,_,+; y,_, 
> 

(12) 

xw -A 2.45~, - 6y, + 1 + 7.5~, + 
20 -- 3 yk+3 +3m75Yk+,- 102yk+5+i yk+6 , 

> 

(13) 
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TABLE V 

Energy Eigenvalues E Depending on the 
Internal Accuracy (normal, 14 digits; double, 

28 digits) and the Number of Steps N 

N E (DOUBLE) E (mm) 

1000 .499999999919 499999999906 
2000 .499999999995 1499999999954 
4000 .500000000000 .499999999812 
8000 . 500000000000 .499999999180 

Nore. Only in the case of double 
precision rounding errors can be neglected. 

the Cooley algorithm yields the same results. The coefficients ci of (12) and (13) 
were derived by solution of a system of linear equations 

yp’ are values of a given polynomial of (n - 1)th order. 

Computerdependent Accuracy 

In the case of the Numerov-Cooley algorithm the propagation of error caused by 
rounding errors (Cyber 995, 14 digits in FORTRAN 77) yields only about nine 
digits for the energy eigenvalues. Table V shows the energy eigenvalue of the 
ground state (harmonic oscillator) for various step numbers N in the case of usual 
precision (14 digits) and double precision (28 digits). The convergence to the 
precise eigenvalue is only given with double precision. 

Computer Time 

In Table VI the computer time in seconds (CDC Cyber 995) for different 
potentials and various accuracy (number of exact digits for the highest state) is 
summarized. 
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